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Accomplishments 

Major goals of the project  
 
The goal of the Florida Coastal Everglades Long Term Ecological Research (FCE 
LTER) program is to conduct long-term studies to understand how climate change and 
resource management decisions interact with biophysical processes to modify 
ecosystem trajectories of coastal landscapes. Changes to hydrologic drivers at either 
the freshwater or marine endmember of karstic coastal ecosystems, with strong biotic 
feedbacks of geomorphology, hydrology, and ecosystem processes, shift the 
dominance of landscape patterns that determine carbon sequestration and food webs 
dynamics. We have observed rapid intrusion of salt water and associated limiting 
nutrients (phosphorus) into brackish and freshwater ecosystems driven by increased 
rates of sea-level rise. Experimental studies are revealing the mechanisms by which 
saltwater intrusion into freshwater and brackish wetlands drives rapid loss of soil 
elevation and stored carbon. However, we now have evidence of changes in ecological 
processes attributed to restoration projects implemented over the last few years. 
Observed increases in pulsed delivery of fresh and marine water via water management 
and climate change to these sensitive ecosystems provides a landscape-scale template 
for testing theories of how pulse dynamics may maintain ecosystems in a developing 
state, reducing vulnerability to the accelerating press driven by climate change (sea-
level rise).  
 
In the past year, we focused on continuing core long-term data collection and thematic 
research of FCE, while also reorganizing our program based on feedback from the 
panel that reviewed our 2018 renewal proposal that resulted in our program being 
placed on probation. We continued to address the central question of how changes in 
the balance of fresh and marine water supplies influence ecosystem structure and 
function in coastal karstic ecosystems, including biogeochemistry and organic matter 
dynamics, primary producers, and trophic dynamics along our freshwater to marine 
gradients of two major drainages, Shark River Slough (SRS) and the Taylor 
Slough/Panhandle (TS/Ph). We placed a particular focus on our trophic dynamics 
research to further integrate consumer movements and food web patterns along 
freshwater-marine-estuarine gradients. Integrative goals were achieved through our 
cross-cutting thematic research on: climate and hydrology, where we focused on 
defining hydrologic presses and pulses; carbon stocks and fluxes, where we 
completed the implementation of a full representative flux tower network to measure the 
net ecosystem carbon balance; water governance, where we continue studies of how 
water conflicts impact the timing, design, delivery, implementation and adaptive 
management of Everglades restoration; and integrative modeling to produce 
landscape-scale predictions of all key ecosystem elements of future climate and 
restoration scenarios. We created a new conceptual framework to achieve further 
integration by addressing theoretically-motivated questions that connect each of these 
cross-cutting themes. The overarching goals of this reporting year included: (1) 
addressing the key goals (summarized below) of each of the core areas in bold, above; 
(2) collecting core long-term data and integrating results from mechanistic experiments 
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and spatial scaling studies; (3) modeling and synthesis efforts linking climate and 
disturbance legacies to future projections, (4) publishing several broad synthesis 
manuscripts, (5) updating FCE data to the Environmental Data Initiative (EDI) Data 
Portal (PASTA), (6) integrating core FCE findings with cross-site syntheses through 
LTER network-wide collaborations, (7) advancing education (FCE Schoolyard) and 
outreach activities through expanded partnerships and building on our diversity plan. 

Major Activities 
 
Climate and Hydrology: To address how long-term changes in the press-pulse regime 
are influencing lateral connectivity, we employed our newly developed Percentile-Range 
Indexed Mapping and Evaluation (PRIME) tool. To determine vertical connectivity we 
investigated long-term water levels and salinity fluctuations in surface and shallow 
ground water (peat soils) and deep groundwater (limestone bedrock) at SRS-4 and 
SRS-6. In addition, specific yield (similar to porosity), hydraulic conductivity, and nutrient 
and constituent leaching were measured from sawgrass marsh to mangroves at SRS-4. 
Remote sensing observations (Sentinel-1 SAR and InSAR) were used to detect annual 
and seasonal water level changes across the FCE. 
 
Biogeochemistry and Organic Matter Dynamics: We published a synthesis of long-
term water biogeochemical changes associated with disturbance legacies throughout 
the FCE.  We also focused on quantifying long-term changes in dissolved and 
particulate organic matter and associated microbial communities along gradients of 
salinity and P in freshwater, brackish, and estuarine wetlands. We collected monthly 
water samples from all FCE sites for quantifying dissolved organic carbon (DOC) 
concentrations, dissolved organic matter (DOM) fluorescence characteristics, and DOM 
structural and isotopic composition, and breakdown rates of particulate organic carbon 
(POC). We finalized results from experimental salinity and P additions in freshwater and 
brackish peat marshes to test for drivers of peat collapse and legacies of saltwater 
intrusion. 
 
Primary Production: Integration of long-term hydrological, biogeochemical, and 
primary production data for sawgrass and periphyton were continued to determine 
trajectories of ecosystem structure and function in SRS and TS/Ph marshes. We began 
a new study to determine the ecophysiological responses of Rhizophora mangle scrub 
mangroves in TS/Ph-7 to seasonal changes in salinity and hydroperiod. We continued 
evaluating the long-term effects of Hurricanes Wilma (2005) and Irma (2017), including 
on mangrove production through ground-based measurements and remote sensing 
observations, and on the benthic macrophyte communities in Florida Bay. 
 
Trophic Dynamics: Assessments of FCE food web trophic dynamics took place in the 
dry and wet seasons of 2019 and 2020. Processing of food web stable isotope samples 
was conducted and is ongoing to identify changes in resource contributions to 
consumers over seasonal and spatial gradients in salinity and primary productivity. 
Consumer isotope data are being integrated with long term acoustic telemetry data and 
stable isotope data for Common Snook to investigate the influence of individual 
movement behavior on spatial subsidies across freshwater, estuarine, and marine 
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boundaries. We continued long-term electrofishing-based consumer sampling and our 
acoustic telemetry-based movement tracking and tagging of game fish. 
 
Carbon Stocks and Fluxes:  We maintained and enhanced our eddy covariance flux 
network (Fig. 1), including tower sites in freshwater marsh (SRS-2), freshwater marl 
prairie (TS/Ph-1), mangrove scrub (TS/Ph-7), tall riverine mangrove forest (SRS-6), 
seagrass (Bob Allen) and the newest tower in the ecotone between freshwater marsh 
and mangrove scrub (SE-1) was established and fully operational. 

 
 
Figure 1. Florida Coastal Everglades Eddy Covariance Tower Network.  
 

Water Governance: Our work on water governance focused on tensions between 
development and environmental management in Miami-Dade County, and agriculture 
and water management in South Dade through an additional 13 interviews and 
participant observations at 8 meetings. Our research on adaptive management has 
focused on identifying and understanding how scientists and practitioners have begun 
to approach the Everglades as infrastructure. We conducted interviews with FIU 
scientists on the technical dimensions of Everglades restoration, and Burmese python 
hunters involved in informal invasive species management. 
 
Integrative Modeling: Long-term water level data (1990 - 2018) and sea levels (1965 - 
2018) were combined with simulated water levels from the SFMWD 2x2 hydrologic 
model to understand the vulnerability of the FCE to sea-level rise and evaluate the 
benefits of various restoration scenarios. Four model scenarios were considered: (1) a 
simulation of existing conditions baseline, (2) implementation of the projects associated 
with the Comprehensive Everglades Restoration Plan and Central Everglades Planning 
Project, (3) establishment of the Everglades Agricultural Area reservoir, and (4) a 
simulation of the natural/pre-drainage system scenario. Measured and simulated water 
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levels and fresh-to-marine head differences (FMHD) were used as primary indicators of 
vulnerability and restoration benefits. 

Specific Objectives  
 
Climate and Hydrology: Our objectives were to unravel the complex interactions 
between water levels and salinity within the FCE under the constant press of sea level 
rise and the pulses of freshwater delivered through water management operations and 
seasonal weather (precipitation, ET) conditions. Our specific goal was to determine the 
FCE's susceptibility to saltwater intrusion by estimating the FMHD along each transect 
as the difference in water levels at each site with sea level at Key West. In addition, we 
wanted to use satellite imagery to determine long-term changes in water levels at larger 
spatial scales. 
 
Biogeochemistry and Organic Matter Dynamics: Our objectives were to understand 
biogeochemical patterns of dissolved and particulate organic matter and microbial 
decomposers along salinity and P gradients of SRS and TS/Ph by: (1) synthesizing 
long-term changes in concentrations of total N, total P, and DOC with bacterioplankton 
productivities in response to disturbance legacies, (2) characterizing dissolved organic 
matter (DOM) fluorescence optical properties, and DOM structural and isotopic 
composition, (3) quantifying breakdown rates of labile and recalcitrant particulate 
organic matter using native litter and standard substrates, (4) characterizing 
assemblages of water-column and benthic microbial communities responses to salinity 
and P, (5) identifying mechanisms of peat collapse through experimental manipulations 
of salinity and P to test for legacies of saltwater intrusion. 
 
Primary Production: Our objectives were to (1) determine relationships between 
periphyton foundation species and total carbon accumulation (or loss) and salinity and 
phosphorus through analysis of results of our experimental research, (2) quantify 
macrophyte species composition and aboveground sawgrass biomass and net primary 
production, and (3) evaluate the effect of Hurricane Irma on mangrove and benthic 
macrophyte production, carbon cycling, and ecosystem resilience. 
 
Trophic Dynamics: Our objectives were to: (1)  continue collection and processing of 
food web stable isotope samples to identify changes in resource contributions to 
consumers over seasonal and spatial gradients in salinity and primary productivity 
across the freshwater-estuarine-marine habitat mosaic, (2) collect abundance and 
movement data on bull sharks, alligators, and game fish, (3) synthesize data collected 
on dolphin movement and vocalization, as it relates to trophic dynamics, and (4) 
continue sampling of basal resources and selected consumers for food-web analyses of 
freshwater food webs using stoichiometric and fatty acid data. 
 
Carbon Stocks and Fluxes: Our objective was to explore within and between 
ecosystem variation to understand seasonal and annual patterns in CO2 fluxes and 
develop methods for processing CH4 flux data. This objective was met by collecting 
core long-term data, integrating results from mechanistic studies, linking climate and 
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disturbance legacies to future projections, and integrating core findings across the 
LTER network-wide collaborations. 
 
Water Governance: Our objectives focused on: (1) transcribing and coding interviews, 
participant observation notes, and publicly-available recordings of meetings on South 
Dade agriculture and resilience, (2) transcribing and analyzing interviews with FCE 
scientists on the technical dimensions of Everglades restoration and the rise of the new 
idea of the Everglades-as-infrastructure. Another goal was to complete an extensive 
review of the social science literature on the Everglades, with a focus on previous FCE 
social sciences work around the diverse and changing ideas and valuations of the 
Everglades and attendant human-nature relations these involve. 
 
Integrative Modeling: Our goal was to understand how alternative restoration 
scenarios would influence the FMHD, and to further validate existing Everglades 
Landscape Model variables through an extended (2016) period of simulation, 
adding/refining variables including diatom and fish dynamics, and adding code/variables 
associated with net ecosystem exchange. We are assimilating flux tower data, thus 
providing the basis for improving performance of the model predictions of ecosystem 
carbon dynamics in ELM v3.1. This work supports project goals through the integration 
of experimental and modeling platforms, allowing further spatio-temporal extrapolation 
of long term data. 

Significant Results  
 
Climate and Hydrology: Water levels along both transects increased from 2001 to 
2016 in response to increased freshwater deliveries and rainfall in the upstream 
reaches and sea-level rise near the coast (Dessu et al., 2020). The most significant 
result is that the lower ground surface elevation (at least 20 cm between sites SRS-3 
and TS/Ph-3) and a lower freshwater-marine head difference in the TS/Ph transect 
makes it more susceptible to sea level rise and saltwater intrusion compared to SRS. 
We were successful in increasing the precision of water levels inferred from 4-year long 
Sentinel-1 SAR data with ground-based observations (Fig. 2; Liao et al., 2020). 
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   A.         B.       C. 
Figure 2. Sentinel-1 SAR Interferometry for water level measurement and its accuracy assessment over 
the entire Everglades. Subplot (a) shows our study area and the EDEN gauge distribution. Each red point 
stands for a gauge at its location. (b) An example interferograms generated with Sentinel-1 SAR 
acquisitions on Oct 9, 2016 and Oct 21, 2016, in which hydrological signal within the WCAs are 
prominent. (c) The accuracy of water level change derived from InSAR compared with EDEN gauge 
measurements. Red squares, cross and plus stand for outliers that have been excluded for comparison. 

 
Biogeochemistry and Organic Matter Dynamics: Concentrations of DOC were linked 
to droughts and hurricane-induced flood events (Figs. 3A, 3E). Fire increased TN (Figs. 
3B, 3F), and hurricanes increased TP concentrations in both SRS and TS/Ph (Figs 3C, 
3G). Freeze and hurricane events increased bacterioplankton productivity (Figs. 3D, 3H; 
Kominoski et al. 2020). Particulate organic organic matter losses were higher in 
mangrove and seagrass than marsh or ecotone ecosystems (Fig. 4A). Burial of litter in 
tidal mangroves (SRS-6) reduced mass loss compared to non-tidal mangrove litter 
breakdown (TS/Ph-7; Fig. 4B). Surface organic matter mass loss was higher than 
buried in fine sediments, but buried organic matter mass loss was higher than surface in 
coarse sediments (Figs. 5A, 5B; Howard et al. 2020). Surface water microbial 
communities were distinct among freshwater marsh, mangrove and seagrass 
ecosystems (Fig. 6A). Experimental salinity additions (~20 ppt) and collapsed brackish 
peat soils had distinct microbial communities compared to ambient (Fig. 6B). Water 
column bacterial productivity increased with long-term increases in DOC concentrations 
in SRS and long-term decreases in DOC concentrations in TS/Ph (Fig. 7). Dissolved 
fluorescence index (FI) of TS/Ph marshes was greater than mangroves, whereas FI was 
similar in marsh and mangrove of SRS. Humification indices were similar between 
marsh and mangrove in both SRS and TS/Ph, but both were higher in SRS than TS/Ph. 
Biological index was higher in mangrove than marsh ecosystems of TS/Ph, and marsh 
and mangrove ecosystems of SRS (Fig. 8). 
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Figure 3. Box and whisker plots of median (black line), upper and lower quartiles (box edges) of annual 
surface water (A, E) dissolved organic carbon (DOC), (B, F) total nitrogen, (C, G) total phosphorus 
concentrations, and (D, H) bacterioplankton productivity among freshwater (gray) and marine wetlands 
(dark gray) of Shark River Slough and Taylor Slough Panhandle from 2001 to 2017. Disturbances are 
indicated by black (droughts, flood), red (fire), blue (hurricanes), and gray lines (freeze events). 
Freshwater wetlands refer to marshes, and marine wetlands refer to mangroves. Whiskers represent the 
maximum and minimum values; open circles represent outlier values.  From Kominoski et al. (2020). 
 
 
 
 

 
Figure 4. Dominant native litter breakdown across ecosystem types throughout the FCE. 
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Figure 5. Breakdown of canvas organic matter standard substrates in surface and buried sediments that 
vary in size (fine and coarse) throughout Florida Bay. 
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Figure 6. Rarefecation curves of microbial operational taxonomic units (OTUs) from (A) surface water and 
(B) brackish soil collected from the FCE. 
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Figure 7. Relationships between water column bacterial productivity and dissolved organic carbon (DOC) 
concentrations across freshwater marsh, ecotone, and mangrove ecosystems of the FCE 
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Figure 8. Temporal patterns of fluorescence DOM indices from marsh and mangrove wetlands of the 
FCE. 
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Primary Production: Periphyton mats exposed to elevated salinity (~22 kg salt m-2 yr-
1) had significantly lower total carbon and dissimilar diatom assemblages relative to 
controls, while mats exposed to salinity and P had greater net productivity (Mazzei et al. 
2020; Fig. 9). P additions only elicited compositional changes in diatom assemblages 
also treated with saltwater (Fig. 10). Sawgrass biomass (Fig. 11A) and densities (Fig. 
11B) are steadily declining in SRS marshes. In comparison, the rates of sawgrass 
annual net primary production have increased at TS/Ph-1 and decreased at TS/Ph-2 
and -3 over the last 11-years (Fig. 12). Sawgrass aboveground biomass at TS/Ph-6 was 
double that of other TS/Ph sites and its annual net primary production was negatively 
correlated with maximum annual salinity (Fig. 13). Eleocharis stem density was highest 
at TS/Ph-2 but showed no long-term trend (Fig. 14). Mangrove litterfall rates were 
reduced 2-4 times the 2010-2016 rate by H. Irma (Fig. 15) but increased in 2019. 
Increased foliar TP uptake by mangroves (Fig. 16) was explained by soil porewater 
SRP concentrations that were 7 times higher in 2017 than the pre-hurricane mean (Fig. 
17; Castañeda-Moya et al. 2020). Scrub red mangrove C assimilation and stomatal 
conductance at TS/Ph-7 decreased during the wet season (Fig. 18, 19). Porewater 
salinity was 15-30 ppt across mangrove habitats - higher values had slightly positive 
effects on leaf ecophysiology (Fig. 19). Analysis of airborne G-LiHT data acquired 
before and after Irma revealed significant amounts of standing dead biomass (Fig. 20). 
Hurricane Irma’s impacts to benthic macrophyte communities were limited in spatial 
extent (Fig. 21). 
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Figure 9. Periphyton net ecosystem productivity (NEP), ecosystem respiration (ER), and gross primary 

productivity (GPP) one-time measurements on periphyton plugs collected on February 2016. Error bars 

indicate standard error. Different lowercase letters indicate significant differences (P ≤ 0.05) among 

treatments for each variable based on MANOVA post hoc pair-wise comparisons across treatment 

groups. F, freshwater control; FP, freshwater and phosphorus; S, salinity; SP, salinity and phosphorus. 

Periphyton net ecosystem productivity (NEP), ecosystem respiration (ER), and gross primary productivity 

(GPP) one-time measurements on periphyton plugs collected on February 2016. Error bars indicate 

standard error. Different lowercase letters indicate significant differences (P ≤ 0.05) among treatments for 

each variable based on MANOVA post hoc pair-wise comparisons across treatment groups. F, freshwater 

control; FP, freshwater and phosphorus; S, salinity; SP, salinity and phosphorus. From Mazzei et al. 

(2020). 
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Figure 10. Nonmetric multidimensional scaling ordination of diatom species dissimilarity, determined from 
settlement plates, among treatments (F, freshwater; FP, freshwater and phosphorus; S, saltwater; SP, 
saltwater and phosphorus) across the four sampling dates. Convex hulls are drawn around significantly 
dissimilar groupings. From Mazzei et al. (2020). 
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Figure 11. (A) Cladium jamaicense (sawgrass) aboveground biomass and (B) density Shark River Slough 
(SRS) sites. Figure illustrates similar pulsed declines in biomass comparing SRS-2 and all marsh sites 
(SRS-1, SRS-2, SRS-3). Long-term data are essential at identifying ecosystem trajectories in plant 
density, which may appear unchanged at short-term scales. 
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A) 

 
 
B) 

 
 

Figure 12. ANPP (A) and Cladium aboveground biomass (B) at Taylor Slough sites S332D, Main Park 
Road, Lower Central and Argyle Henry. 
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Figure 13. Cladium ANPP and maximum annual salinity over the 20-year period of record. 
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Figure 14. Eleocharis stem density at Taylor Slough freshwater and oligohaline marsh sites. 
 

 

 
Figure 15. Long-term variation in total annual litterfall production in mangrove forests along Shark River 
estuary before and after the passage of Hurricanes Wilma (October 2005) and Irma (September 2017) 
across the FCE. 
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Figure 16. Monthly mean (± 1 SE) TP concentrations in leaf litter of the mangrove species (A) A. 
germinans, (B) L. racemosa, and (C) R. mangle in SRS-6 during post-Wilma (2008 and 2014) and 
immediately post-Irma (2018) periods. Blue dotted lines and numbers represent mean (± 1 SE) annual 
values. Green dotted squares and numbers indicate mean maximum TP concentrations in leaf litter 
during 2018; nd, no data; nl, no leaf litter data (Castañeda-Moya et al. 2020). 
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Figure 17. Spatial and seasonal variation in porewater SRP concentrations measured in mangrove sites 
along the Shark River estuary during post-Wilma (2008 dry season to 2017 dry season) and immediately 
post-Irma (2017 wet season to 2018 dry season) periods. Blue dotted lines and numbers represent mean 
(±1 SE) annual values; nd, no data (Castañeda-Moya et al. 2020). 
 

 

 

 

Figure 18. Predicted marginal mean (±95% confidence intervals) values of photosynthesis (Anet), stomatal 
conductance (gsw), the concentration of intracellular CO2 (Ci) and photosynthetic water use efficient (wue) 
by mangrove island habitat and season in scrub mangrove forests at TS/Ph-7. The dry season is 
November to April, and the wet season is May to October. 
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Figure 19. The effect of soil porewater salinity (left four panels) and water level (right four panels) on leaf 
photosynthesis (Anet) and stomatal conductance (gsw) in scrub mangrove forests at TS/Ph-7. Lines are 
habitat-specific predicted mean marginal mean values (± 95% confidence intervals) from linear mixed-
effects models. 
 

 

 

 

Figure 20. (A) Standing Biomass (SBD) from field observation vs Modeled SBD compute from multi-
regression analysis. (B) Histogram of modeled SBD values across both sites. (C) and (D) Maps of 
modeled standing dead biomass along the Harney river and the Shark River. 
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Figure 21. Spatial pattern in short-term response for total seagrass (TSG) (a) and total calcifying green 
macroalgae (TCAL) (b) across the Florida Keys National Marine Sanctuary (FKNMS) and Florida Bay 
(FB) (Wilson et al. 2020). 

 
Trophic Dynamics: Trophodynamic research identified a strong gradient in carbon and 
sulfur isotope values along freshwater, estuarine and marine transects which can be 
exploited to trace organic matter in consumer tissues to its spatial origins with high 
resolution (Fig. 22) (Rezek et al. in press). These data were used to identify resource 
contribution to Snook and measure the extent that movement mediates cross-boundary 
trophic subsidies (Fig. 23). Long-term monitoring of juvenile bull sharks revealed that 
population structure took nearly seven years to mimic the pre-cold snap structure 
(Matich et al. 2020). The work found that both ontogenetic shifts and inter-individual 
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behavioral variability led to a slower recovery than predicted based on overall shark 
CPUE (Matich et al. 2020). Bottlenose dolphins in the Shark River show strong 
seasonal and interannual variation in abundance (Fig. 24). Alligators varied in 
behavioral responses to Hurricane Irma ranging from no effect to a complete shift in 
commuting across the estuary linked to changing prey availability (Strickland et al. 
2020). Native mosquitofish (Gambusia geiseri) were more vulnerable to intrageneric 
and intergeneric competition than invasive mosquitofish (G. affinis), explaining the 
comparatively widespread distribution of the invader (Rehage et al. 2020). 
 

 
Figure 22. Carbon/sulfur and carbon/nitrogen stable isotope values of the prey base (mean ± SD) from 
freshwater and estuarine regions of the Shark River Estuary and Florida Bay (Marine), and individual 
snook tagged in the Shark River Estuary classified by their movement patterns based on acoustic 
telemetry data (adapted from Rezek et al. in press, Ecosphere). 
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Figure 23. Boxplots showing the proportion of receiver detections in upstream freshwater regions versus 
downstream estuarine regions of the Shark River Estuary (a), standard length (b), and estimated prey 
source dietary contributions (stable isotope mixing model posterior means) (c) to individuals classified as 
downstream snook vs. upstream snook based on acoustic telemetry movement data (adapted from 
Rezek et al. in press, Ecosphere). 
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Figure 24. Mean daily detection positive minutes (DPM) and standard deviation of dolphin vocalizations 
for the years 2017-2019 in the Shark River Estuary, with letters indicating significant differences between 
years (ANOVA: p <0.005).  
 
Carbon Stocks and Fluxes: An analysis of 10 years of eddy covariance data from 
freshwater marl prairie showed that gross primary production decreased linearly and 
ecosystem respiration rates declined in a threshold manner as water level and 
inundation increased (Fig. 25). The ecosystem became a net CO2 source when water 
level >46 cm or inundation >7 months (Fig. 26). The riverine mangrove tower site (SRS-
6) was a source for CO2 (~794 g C m-2) in 2019, while in the first half of 2020 it was a 
net sink for CO2 (116 g C m-2), suggesting that the sink capacity of this site may be 
returning following H. Irma. CH4 fluxes were an order of magnitude smaller than CO2 
fluxes and the greenhouse C balance (CH4/NEE) indicated that the riverine mangrove 
forest offsets CH4 emissions (Fig. 27). Everglades scrub mangroves (TS/Ph-7) exhibited 
strong diurnal patterns in NEE (Fig. 28) suggesting that calcium carbonate production at 
night is a significant sink for CO2. The scrub mangroves were a net sink for CO2 on the 
majority of days (77%) (Fig. 29) but water use efficiency of scrub mangrove forests was 
low (Fig. 30). In seagrass meadows, FCO2 was 36% greater during the day than at 
night, causing the site to function as a net CO2 source to the atmosphere of 0.27 µmol 
m-2 s-1. A quarter (23%) of the diurnal FCO2 trend was due to the effect of changing 
water temperature on gas solubility. Evaporation rates were ~10 times greater than 
precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die-
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offs. We confirmed a dominant role of convective forcing on night-time enhancement 
and day-time suppression of gas transfer. 

 
 
Figure 25. Time-series plot of FCO2 and z/L. Values of FCO2 are colored by LE, highlighting the positive 
correlation between these two fluxes. The unstable but very close to neutral zone (UVCN; -0.1< z/L < 0) 
is shown between the dotted horizontal lines. 

 
 

 
 
Figure 26. Net ecosystem CO2 exchange (NEE) as a function of the interaction between WL and ID 

based on the least square mean predictions from the model in Table 2. The solid curve indicates the 

compensation points (i.e., NEE = 0 g C m−2 day−1) under the corresponding conditions. The dashed 

lines represent the 95% confidence interval of the compensation points. 

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14718#gcb14718-tbl-0002
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Figure 27. Half-hourly net ecosystem exchange rates (NEE) and CH4 fluxes at the SRS-6 riverine 

mangrove site.  

 

 
 

Figure 28. The greenhouse carbon balance is the ratio of net CH4 to net CO2. The redline indicates the 

compensation point (0.04) above which net CO2 is not offsetting net CH4 emissions at the tall riverine 

mangrove site (SRS-6). While this threshold is crossed sporadically, the site is a greater sink for CO2 

most of the time.  

 

 

 

 

a. 

b. 
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Figure 29. CO2 dynamics at the scrub mangrove tower site. (a) Strong diurnal patterns, (b) seasonal 

oscillations, and dynamic fluxes of net ecosystem exchange (NEE), Ecosystem Respiration (Reco) and 

gross ecosystem exchange (GEE). 

 

Figure 30. Daily water use efficiency (NEE/ ET) and evapotranspiration (ET) in scrub mangrove forests 
in southeastern Everglades. 

 
Water Governance: Research on regional governance revealed the formative role of 
historic racialized development in shaping the implicit expectations many actors bring to 
the table when determining environmental governance goals. Development interests 
may set a harder boundary on the scope of possible restoration activities than prior 
work has recognized (Grove et al. in press). Work on water conflicts in South Dade 
agriculture details how water management practices both assist and complicate 
farmers’ resilience to environmental changes, showing a divergence between expert-
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. 
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driven resilience initiatives and farmers’ ad hoc responses to everyday experiences of 
environmental change. Adaptive management studies clarify a novel understanding of 
the Everglades as “infrastructural nature,” providing a new conceptual framework to 
understand the specific class of nature-as-infrastructure projects geared toward using 
perceived natural processes to govern intrusions of other, less desirable, natural 
processes. 
 
Integrative Modeling:  See below 

Key outcomes or Other achievements 
 
Climate and Hydrology 

• Taylor Slough is more susceptible to the effects of sea level rise compared to 
Shark Slough due to lower ground surface elevations. 

• Satellite observations (Sentinel-1 SAR Interferometry) can be used to accurately 
detect seasonal and long-term changes in water levels across the Everglades. 
  

Biogeochemistry and Organic Matter Dynamics 

• Legacies of disturbance drive biogeochemical changes in freshwater and marine 
ecosystems. 

• Increasing marine water increases variability and magnitude of organic matter 
mass loss. Increasing sediment grain size increases buried relative to surface 
organic matter mass loss. 

• Microbial assemblages are similar among freshwater marshes but different 
among brackish marshes. Salinity dosing reduced taxonomic richness in soil 
microbial communities at brackish but not freshwater marsh sites. 

• Bacterial productivity is positively correlated with DOC concentrations in peat-
based marshes and negatively correlated with DOC concentrations in marl-based 
marshes. 

• Marl marsh and mangrove wetlands have higher bacterial and algal-based 
dissolved organic matter indices and lower terrestrial/humic dissolved organic 
matter than peat-based wetlands. 

 
Primary Production 

• We identified the phosphorus and salinity optima and tolerances for 56 diatom 
taxa inhabiting periphyton mats, including 18 species that can serve as early 
indicators of shifts in the marsh-mangrove ecotone resulting from salinity and 
phosphorus changes driven by saltwater intrusion. 

• Increases in water levels are decreasing plant density and biomass in longer-
hydroperiod wetlands but increasing aboveground net primary productivity in 
shorter-hydroperiod wetlands. 

• Mangrove litterfall could be used as an indicator to evaluate trajectories of 
canopy recovery and resilience to hurricane disturbances in areas of high 
recurrence of storms such as the Gulf of Mexico and the Caribbean region. 

• Ecophysiological responses of R. mangle scrub forests are modulated by 
seasonal changes in porewater salinity and hydroperiod. Mangrove habitats 
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defined by elevation change (i.e., center vs. edge) also influence leaf gas 
exchange, with depressed rates in the edge habitats relative to their centers. 

• Analysis of airborne G-LiHT data indicated large amounts of mangrove standing 
dead biomass after Irma’s impacts in both Harney and Shark River estuaries. 

• Impacts to south Florida benthic macrophyte communities from Irma were not 
catastrophic and were limited in spatial extent, with higher damage in areas that 
sustain direct impact compared to more protected areas (i.e., estuarine habitats). 
This suggests that benthic communities hit by heavy winds are more likely to 
sustain direct physical impacts, whereas estuarine areas with longer residence 
times are more at risk of the indirect effects of stormwater runoff and retention 
(Wilson et al. 2020). 

• We developed a framework to study the impacts of hurricanes on ecosystems 
(Hogan et al. 2020).  

Trophic Dynamics 

• Mark recapture data collected in the Shark River Estuary was used to evaluate 
Largemouth Bass survival over years of varying drought intensity. 

• An illustration of a hypothesized the FCE food web, developed through a 
collaboration of FCE scientists and a digital artist, was finalized (Fig. 31). This 
illustration will be used as an educational aid and disseminated in future 
publications. 

 
Figure 31. Illustration of important trophic interactions within and between habitats of the Florida 
Coastal Everglades (Bottom Panel) and the hypothesized effect of increased energy and nutrient 
transport between these habitats in response to increased water inflow associated with the 
Comprehensive Everglades Restoration Project (Top Panel). 
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Carbon Stocks and Fluxes 

• All towers remained operational 2019-2020. A new tower at the freshwater 
ecotone was added. 

• Climate change or water management activities that increase water levels and 
inundation in freshwater marshes weaken CO2 sink strength, creating a positive 
feedback to climate change. 

• Our findings indicate that evaporation and FCO2 over shallow, tropical and 
subtropical seagrass ecosystems may be fundamentally different than in 
submerged vegetated environments elsewhere, in part due to the complex 
physical forcing of gas transfer in these coastal waters. 

Water Governance 

• Article in press at Geoforum on cultural values and environmental politics in 
South Florida 

• Co-edited book on environmental politics and governance in the Anthropocene 

Integrative Modeling 

• Modified ELM code-data to support 64bit systems and extended climate data 
rescaling and processing, with promising preliminary model performance 
improvements towards ELM v3.2, including the incorporation of diatom 
assemblage-based predictions of ecotone movement.  

Opportunities for training and professional development  
 
The FCE LTER provides professional development opportunities to its members at all 
levels through a near peer mentoring model that includes undergraduates, graduate 
students, post-docs, college faculty, and K-12 teachers.  Over the last year, 11 
undergraduates have participated in FCE research and are distributed across five FCE 
labs.  The Malone Disturbance Ecology Lab focused on the recruitment of 
underrepresented students and provided support to William Sanchez, Nisha Ali, and 
Jenisha Oli.  Support was also provided for Zhuoran Yu who is co-advised by Starr and 
Staudhammer at the University of Alabama and two REUs (one active; one delayed due 
to COVID-19) placed in other FCE labs.  The FCE Graduate Student Group consists of 
69 total members distributed across our research groups where they are mentored by 
faculty and post-docs.  Our graduate students also share in the responsibility of 
mentoring undergraduates and members of the K-12 community.  Our post-doctoral and 
junior faculty members are included in site leadership roles through the Internal 
Executive Committee and are involved in the co-production of research with senior 
faculty mentors.  The FCE Research Experience Programs provides professional 
development to K-12 teachers through Research Experience for Teacher (RET) 
fellowships and in collaboration with the National Tropical Botanical Gardens through 
the Kampong Science Enrichment Program (K-STEP).  While current RET Cristina 
Whelan’s work has been postponed due to COVID-19, she will continue the 
decomposition work that she began in 2019 when it is safe to do so.  Whelan’s RET will 
be extended for an additional year through newly secured funding.  Whelan will continue 
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collecting data for an additional year, provide near peer mentoring to new RET Ms. 
Beatriz Guimarãez, and serve as a facilitator for the upcoming K-STEP. 
 

Communicating results to communities of interest 
 
The results of our research are disseminated to communities of interest through the 
FCE Communications Team and the collaborators within our site membership.  The 
Communications Team consists of the PI, Program Manager, Education & Outreach 
Coordinator, and Collaborator Steve Davis.  The team works closely with the FIU 
Division of External Relations, Strategic Communications & Marketing (FIU External 
Relations), LTER Network Communications Office, Everglades Foundation, and NSF 
Communications Office to increase public awareness and generate an interest in 
learning about the Florida Coastal Everglades.  Through these collaborations we 
receive guidance for communicating with external audiences through social media, 
press releases, newsletters, and an annual impact report.  These communications allow 
us to maintain a consistent presence in the news media and increase our ability to 
engage with the members of our community that are not typically aware of our research.  
Scientists from both governmental agencies and NGOs are included within our 
membership and serve an important role in connecting with policymakers and regulators 
by allowing us to report our results directly to governmental agencies such as the US 
EPA, USGS, South Florida Water Management District, and National Park Service.  As 
Director of Communications for the Everglades Foundation, Collaborator Davis meets 
regularly with lawmakers, staffers, and key constituents to provide briefings and 
restoration guidance and PI Gaiser informs and advises Florida’s Governor of the 
upstream causes of harmful algal blooms as a member of his Bluegreen Algae Task 
Force. 

Plans to accomplish goals during the next reporting period 
 
We plan to complete the objectives of our year 2 research during the no-cost extension. 
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Impacts 

Impact on the development of the principal disciplines 
 
Water Governance: FCE-supported research has supported Grove and Wakefield’s 
co-edited volume on Resilience in the Anthropocene: Governance and Politics at the 
End of the World, which is impacting how geographers and scholars in cognate fields 
understand changing forms of environmental politics and governance in the 
Anthropocene. This research on governance and urban development has also 
contributed to Grove and colleagues’ forthcoming paper on design, justice and 
resilience in Geoforum. This promises to be a very impactful paper that will make a 
signal contribution to understanding the relations between cultural values, justice and 
equity concerns, the region’s history of racialized development, and environment 
governance in South Florida. The analysis in this paper is also feeding directly into 
planned research on the relation between cultural values and forms of authority in water 
governance networks. Research on adaptive management is poised to make significant 
contributions to understandings of ‘nature as infrastructure.’ Wakefield is using fieldwork 
carried out over the previous year for an article in submission at Environment and 
Planning D: Society and Space that develops the concept of “Anthropocene 
infrastructural nature” as a means of understanding the specific class of nature-as-
infrastructure projects geared toward using perceived natural processes to govern 
intrusions of other, less desirable, natural processes. 
 
In addition, FCE researchers oversee projects sponsored by state and federal 
management agencies to understand how the ecosystem response to hydrologic 
changes driven by restoration and climate drivers including sea-level rise, fire, and 
tropical storms across the marl prairie and ridge-slough landscapes, along marl prairie-
slough gradients and on tree islands, in mangrove habitats, and in the shallow seagrass 
meadows in Florida Bay. This work directly integrates FCE findings to inform land/water 
decisions. Decisions about management of endangered and non-native species is also 
informed by this research. For example, management-induced hydrologic changes in 
the last decade revealed in FCE data have caused vegetation in eastern marl prairies to 
shift toward wetter communities while the northeastern portion of the western prairie has 
become drier. These changes have shifted the habitat use for the endangered Cape 
Sable seaside sparrow. Changes in the abundance and distribution of this species and 
their habitat has strong implications for the restoration of the Everglades. 
 
In another example, Jordan Massie and Jennifer Rehage organized and convened a 
workshop at the 2019 Florida Atlantic Coastal Telemetry annual meeting in Tequesta, 
FL (December 3, 2019). This workshop brought together researchers from across 
Florida and included representatives from academia (FIU, FAU, UF), NGOs (Bonefish & 
Tarpon Trust), and state management agencies (FWC/FWRI) to review and synthesize 
past acoustic telemetry research involving Common Snook and discuss outstanding 
research gaps and opportunities for collaborative research using movement data from 
different systems. This workshop has motivated current FCE analyses investigating how 
variation in environmental conditions influence the migration timing of Snook in the 



 

35 
 

Shark River Estuary, particularly the role of seasonal changes in the magnitude of 
freshwater flow. Results will provide insight into how water management, restoration, 
and climatic shifts may affect this recreationally/economically important fishery in the 
future. 
 
Integrative Modeling and Synthesis: Advancing ecology to make it more useful and 
relevant requires a fundamental shift in thinking from measuring and monitoring, to 
using data to anticipate change, make predictions, and inform management actions. 
The bulk of ecological forecasts are largely scenario-based projections focused on 
climate change response on multidecadal time scales, yet the timescales of 
environmental decision-making tends to require near-term (daily to decadal) data-
initialized predictions, as well as projections that evaluate decision alternatives. Rapid 
changes in climate and land use are creating novel ecosystem states and coastal 
ecosystems are especially vulnerable to abrupt transformations from SLR and human 
development. 
 
We will continue to link these changes in fresh and marine water supplies to patterns in 
ecosystem function and study how this influences the emissions of greenhouse gases. 
We will achieve this through cross-site distributed studies of ecosystem carbon flux and 
scenario modeling. This research is particularly important for coastal regions where live 
plants are vital for maintaining soil structure (i.e., elevation), and decreases in 
vegetation health can cause wetland carbon loss. Earth System Models do not 
accurately predict greenhouse gas emissions under a changing climate and wetland 
model-data comparison studies have shown that uncertainty in model predictions of 
greenhouse gas emissions are due to (1) the seasonal effects of inundation, (2) the lack 
of representation of inundated plant processes, and (3) the need for greater 
representation of wetland subsurface biogeochemistry. FCE has influenced the field of 
coastal biogeochemistry by advancing understanding of how disturbances interact with 
long-term changes in dissolved and particulate chemistry. These ongoing studies will 
continue to directly contribute to reducing known uncertainties through observational 
and experimental studies of the coupled cycling of CO2 and hydrology.  

Impact on other disciplines 

 
Grove and colleagues’ forthcoming paper in Geoforum engages multi-disciplinary 
research (including geography, sociology, planning, design and engineering) on justice, 
design and resilience.  

Impact on the development of human resources 

 
Opportunities for research, teaching and mentoring in science 
FCE LTER invests in human resource development through the recruitment and training 
of undergraduate and graduate students from diverse communities.  Each year, our 
base funding provides support for two undergraduates as formal REUs.  Each student is 
provided with stipend support and included as members of FIU’s Coastal Ecosystems 
REU Site (CE-REU) where they participate in cohort-building, networking opportunities, 
social events, and weekly field trips. Each participant presents their results at the REU 
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Site Symposium, the annual FCE All Scientists Meeting, and at a national or 
international conference.  This year, the typical operations of our program has been 
disrupted by the COVID-19 pandemic and has delayed one REU and postponed the 
second until the summer of 2021.  Graduate students serve as near peer mentors to 
undergraduates and are engaged in all elements of the FCE program as members of 
our working groups and at our annual meetings.  We offer and participate in LTER 
network-wide and FCE-specific distributed seminars designed specifically for LTER 
graduate students and encourage them to apply for synthesis opportunities through the 
LTER Network Office. 
 
Improving access and retention of underrepresented groups in research 
In 2019, the FCE Diversity and Inclusion Committee was established to improve the 
access and retention of members of underrepresented groups by addressing the Big 
Idea of NSF INCLUDES and contributing to broadening the participation of 
underrepresented communities in STEM fields with guidance from the NSF Strategic 
Plan (FY 2018-2022). The committee consists of the Lead PI, the Education and 
Outreach Coordinator, one graduate student, one FIU collaborator, and an off-site 
collaborator.  The committee is currently represented to the IEC and LTER Network 
Executive Board by graduate student L. Iporac. 
 
The FCE Diversity and Inclusion Plan (FCE-DIP) was recently developed by the 
committee and is being used as our guide for the advancement of students, early career 
scientists, and faculty from underrepresented groups by promoting the inclusion, equity, 
and well-being among FCE collaborators.  The FCE-DIP established three measurable 
objectives:  (1): Enhance representation and advancement of early career scientists 
from underrepresented groups; (2): Enhance representation of faculty from 
underrepresented groups; and (3): Promote diversity, equity, inclusivity, and well-being 
among FCE collaborators.  Diversity issues are also addressed through the diversity of 
our leadership team which includes 7 women, 3 Hispanics, 1 Asian, 1 Non-Hispanic 
Black, and 3 LGBT members.  Our senior personnel, collaborators and postdocs are 
42% underrepresented and our graduate students are 38% female and 41% 
underrepresented ethnic groups. 
 
The FCE program honors the identity of all participants and maintains an atmosphere 
that represents and embraces diverse cultures, backgrounds and life experiences that 
reflect the multicultural nature of South Florida and the global society.  Three members 
of our leadership are being trained as undergraduate mentors by FIU’s Multicultural 
Programs and Services (MPAS) Office as advocates on issues related to diversity, 
inclusion, and equity.  PI Gaiser serves on the internal advisory board of FIU’s 
ADVANCE program in the Office to Advance Women, Equity & Diversity to advance 
institutional structures, processes, and climate to recruit and promote FCE faculty from 
underrepresented groups.  
 
FCE is fosters leadership through the diverse structure described above, encouraging 
membership in more than one working group, inclusion of multiple working groups on 
student advisory committees, and through the co-production of publications with 



 

37 
 

agency/NGO scientists.  As our Diversity and Inclusion Plan moves toward full 
implementation, our progress will be annually assessed by Associate Dean of 
Research, Dr. Rita Teutonico, through interviews, focus groups, and an anonymous 
survey of quantitative demographic and qualitative inclusion data. 
 
Scholarships to support FCE Graduate Students 
The FIU ForEverglades scholarships are funded by the Everglades Foundation and 
awarded annually to full-time graduate students from FIU pursuing degrees in sciences 
and focus on improving our knowledge on Everglades physical, chemical or biological 
processes, or economic impacts of environmental changes.  This year, three FCE 
Graduate Students received $25,000 each for use towards stipends, travel, and other 
research-related expenses. 
 
Providing exposure of practitioners, teachers, young people, or other members of 
the public to FCE science 
Since our last report, the FCE Schoolyard Program has been addressing the NSF’s 
Strategic Plan’s goal to “advance the capability of the Nation to meet current and future 
challenges with K-12 programs that will support the development of the next generation 
of researchers” by: (1) providing mentoring to K-12 students and teachers through our 
LTeaER participatory  science program,  (2) facilitating presentation of their findings at 
science fairs, and (3) pursuing supplemental sources of funding to support high school 
teacher participants in FCE related research. 
 
The FCE LTeaER decomposition project is a primary focus of the FCE Schoolyard 
Program. Modeled after the Tea Bag Index (TBI) study (Keuskamp et al. 2013) and 
aligned with the research objectives of the Detritus & Microbes working group, the 
LTeaER program engages our community in a long-term decomposition study to test 
hypotheses about the drivers of organic matter transformation while contributing to this 
global research project. Teabags are deployed at each of our research and are being 
studied by an REU student and a Research Experience for Teachers (RET) fellow. 
 
In the Fall 2019, RET Cristina Whelan and four students from her Research and 
Experimentation course at BioTECH High School deployed teabags along the 
spatiotemporal pulse gradient of the Cutler Slough under mentorship of PI Kominoski 
and the Education and Outreach Coordinator Oehm. Located on the grounds of FCE’s 
Deering Estate partner, this tidal creek has been reconnected to upstream wetlands as 
a small-scale urban representation of Everglades restoration. The initial samples were 
collected, analyzed, and the resulting data was presented by the students at the 2020 
Southeast Regional Science and Engineering Fair of Florida in their poster Go With The 
Flow: Differences In Tea Decomposition In a Restored Wetland and were the first from 
their school to participate in this regional fair. While the subsequent sample collections 
have been postponed due to the COVID-19 pandemic, the collections will resume when 
it is safe to do so.  
 
Working in collaboration with the FIUteach program, Education & Outreach Coordinator 
Oehm has begun to develop evaluation tools that will assess the impact of our 
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Research Experience programs. Initially these tools will be used to evaluate the RET 
program with future plans to further adapt their use for evaluating the REU and RAHSS 
programs.  

Impact on physical resources that form infrastructure 
 
The establishment of the eddy flux tower at the marl-marsh ecotone site has allowed us 
to complete our flux tower network array. The boardwalk at SRS-2 has been replaced.  

Impact on institutional resources that form infrastructure 
 
The FCE LTER program was instrumental in advising the establishment of the Institute 
of Environment as a State of Florida Program of Excellence.  

Impact on information resources that form infrastructure 

 
Information Management 
 
New FCE Website 
The FCE LTER information management (IM) team (Kristin Vanderbilt (IM) and Mike 
Rugge (Project Manager)) met a major IM milestone stated in the 2018 proposal when a 
new FCE website (https://fcelter.fiu.edu/) was launched in December 2019. The old 
FCE website was hand-coded and laborious to maintain. The new website takes 
advantage of Cascade, the content management system used by FIU, to make website 
updates easier. While the Project Manager did most website updates himself on the old 
website, migrating the website into Cascade enables other FCE staff to have 
permissions to sections of the website in order to update their own content. With input 
from PIs, staff, and students, the information on the new website has been refreshed 
and reorganized for ease of navigation.  Cascade facilitates integration with social 
media and newsfeeds and offers website search functionality. The new website 
significantly improves on the old one by being mobile device friendly and resolving to a 
size appropriate to the device on which it is being viewed. 
 
Unfortunately, Cascade does not support dynamic web pages, such as the popular 
custom query interfaces to data, bibliography, and personnel databases found on the 
old FCE website. The FCE Project Manager therefore used the Foundation Framework, 
a responsive front-end software framework for web design, to produce a template 
mimicking the Cascade FCE website. He re-wrote all the query scripts on the old 
website in PHP in order to replace near-obsolete Embperl scripts. He preserved the 
many options from the old website for filtering datasets, publications, personnel and 
photographs for ease of discovery, while offering the new look and feel of the Cascade 
website. The dynamic part of the FCE website is served via an Apache webserver that 
is managed by the Project Manager on a Linux virtual machine, while the Cascade part 
of the website is served by FIU Communications. This new, hybrid FCE website has 
improved the experience of web visitors seeking data or information about the FCE 
LTER. 
 

https://fcelter.fiu.edu/
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New FCE Data Catalog 
FCE has updated its approach to generating and querying the FCE website’s Data 
Catalog. The new method takes advantage of RESTful web services provided by EDI’s 
PASTA+ data repository software. Previously, the FCE IM had submitted EML 
documents to the EDI Data Repository and then captured a subset of that metadata in a 
local Oracle database to drive the FCE Data Catalog. Maintaining two copies of the 
metadata, one in the EDI repository and the other local, was inefficient. With the new 
system, the IM submits EML to the EDI Data Repository as before, but then the EDI 
Repository becomes the source of metadata to populate the FCE Data Catalog. Further, 
PASTA+’s Solr repository can be queried from the FCE website to discover FCE 
datasets based on metadata stored in keywords, author, and title EML fields. This new 
approach for generating and querying the FCE Data Catalog expedites updates of FCE 
datasets. 
 
The new FCE Data Catalog improves over the old catalog because EDI’s web services 
allow the retrieval and display of the DOI associated with each dataset citation on the 
new FCE website. Having complete dataset citations on the FCE website will make it 
easier for FCE scientists to cite the datasets they use. As more FCE scientists include 
dataset citations in the papers they author, the better FCE LTER will be able to track 
data usage in the future.  
 
FCE Databases 
The FCE Information Management System (FCE IMS) contains 177 datasets which are 
available on the FCE LTER’s website (https://fcelter.fiu.edu/data/index.html) and in the 
EDI Data Repository.  Three datasets were added and 44 long-term datasets were 
updated between 12/01/2019 and 08/31/2020.  All datasets are publicly accessible 
except when an embargo has been granted while a graduate student publishes on a 
dataset or where a dataset was not collected using FCE LTER funds.  A table of titles 
and DOIs for FCE LTER datasets deposited in the EDI Data Repository is included as a 
supporting file in the Products section of this report.  
 
Data Processing 
FCE LTER has traditionally relied on the XLSX2EML perl program, written by the 
Program Manager, to translate metadata from an Excel template to EML.  This program 
works extremely well for datasets that have only a single data entity.  It is not designed, 
however, to generate EML for data packages with multiple entities. More and more, 
FCE scientists are wanting to archive datasets with code or multiple data tables, so the 
FCE information manager has adopted EDI’s EMLAssemblyline R package for this 
purpose.   
 
Data Use 
Use of FCE LTER data is steady.  A manual search of Google Scholar for DOI’s from 
the EDI Data Repository detected 5 papers published between 12/1/2019 and August 
30, 2020 that contain 13 citations of FCE LTER datasets. Downloads of FCE datasets 
suggest that the data are being used more frequently than they are cited. The logs from 
the FCE website recorded 231 non-robot dataset downloads between 12/1/2019 and 

https://fcelter.fiu.edu/data/index.html
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8/17/2020, while the EDI Repository recorded 26,182 non-robot downloads of FCE 
datasets during the same period.  Roughly 1000 of these downloads do not have an 
identifiable user agent, however, so could reflect robot activity.  Seven datasets had 
about 3000 downloads apiece.  For just one of the seven, data package knb-lter-
fce.1074.7, there have been 1052 requests between August 26 and September 9, 2020, 
but 977 are checksum requests from DataONE (Servilla, pers. comm.).  A better 
estimate of downloads from PASTA is thus about 4000 when unidentifiable user agents 
and repetitious DataONE requests are filtered out.  This still indicates considerable 
interest in FCE data. 
 
Supporting local and LTER Network science 
The FCE information management team supports site and network level science by 
making high quality FCE data and metadata accessible through the FCE LTER website, 
the EDI Data Repository, and Network-level cross-site databases.  Updates to long-term 
FCE datasets are regularly published in both locations in compliance with the FCE Data 
Management Policy and LTER Data Access Policy. The FCE IM made final updates to 
the LTER Network’s cross-site climate database (ClimDB) in June 2020 because that 
database will soon be archived in the EDI Repository. Future FCE climate data will go 
into CUAHSI’s archive, along with the climate data from other LTER sites, per the new 
approach to standardizing LTER climate data approved by LTER’s Executive 
Committee. 
 
The FCE information management team lends its expertise to FCE researchers and 
graduate students by offering presentations about information management topics and 
assistance with metadata development, data submissions, individual project database 
design, GIS and research graphics. 
 
IT Infrastructure 
The FCE information management system’s web server, Oracle 12c database and 
SFTP server are loaded on three virtual servers housed on FIU’s Division of Information 
Technology’s equipment.  Per the FCE Disaster Recovery Plan, the FCE LTER Oracle 
database and websites are backed up offsite at the Northwest Florida Regional Data 
Center (NWRDC) located on the campus of Florida State University in Tallahassee, 
Florida. 
 
Other contributions 
The FCE IM is a co-PI on the EDI award and works quarter-time for EDI doing 
education and outreach.   She serves as the liaison between the LTER Information 
Management Committee and EDI.  She is currently the Associate Editor for Data 
Science for the journal Ecological Informatics.  She serves as the US representative on 
the International LTER’s Information Management Committee and has co-authored a 
chapter about the US ILTER experience (Waide and Vanderbilt, in press). She 
collaborates with other LTER information managers on presentations at national 
meetings (Kui et al. 2020).  
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Impact on technology transfer 
 
FCE ensures that science and management are fully integrated through coproduction of 
science through academic and agency collaborations. Everglades restoration directly 
relies on FCE for science to inform restoration best practices. For instance, FCE data is 
being reported in the 2020 System-Wide Ecological Indicators for Everglades 
Restoration report of the South Florida Ecosystem Restoration Task Force that conveys 
the progress of ecosystem restoration directly to the U.S. Congress. We contribute to 
the National Academies of Science biennial report by the Committee on Independent 
Scientific Review of Everglades Restoration Progress.  

Impact on society beyond science and technology 

 
We have produced many press releases and public news articles that link the science of 
FCE to the community of South Florida. 
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Products 

Publications 

Books 
 
Chandler, D., K. Grove and S. Wakefield. 2020. Resilience in the Anthropocene: 

Governance and Politics at the End of the World. Routledge. 

Book Chapters 
 
Grove, K., and A. Barnett. 2020. Destituting resilience: contextualizing and contesting 

science for the Anthropocene, in Chandler, D., K. Grove and S. Wakefield (eds.) 
Resilience in the Anthropocene: Governance and Politics at the End of the World. 
Routledge. 

 
Waide, R., and K. Vanderbilt. In Press. Understanding the Fundamental Principles of 

Ecosystems through a Global Network of Long-Term Ecological Research Sites, in 
Waide, R. and S.E. Kingsland (eds.) The Challenges of Long Term Ecological 
Research: A Historical Analysis. Springer. 

 
Wakefield, S., K. Grove, and D. Chandler. 2020. Introduction: the power of life, in 

Chandler, D., K. Grove and S. Wakefield (eds.) Resilience in the Anthropocene: 
Governance and Politics at the End of the World. Routledge. 

Journal Articles 
 
Published 
Breithaupt, J.L., J.M. Smoak, T.S. Bianchi, D. Vaughn, C.J. Sanders, K. Radabaugh, 

M.J. Osland, L.C. Feher, J. Lynch, D.R. Cahoon, G. Anderson, K.R.T. Whelan, B.E. 
Rosenheim, R.P. Moyer, and L.G. Chambers. 2020. Increasing rates of carbon 
burial in southwest Florida coastal wetlands. JGR Biogeosciences DOI: 
10.1029/2019JG005349. 

 
Castañeda-Moya, E., V.H. Rivera-Monroy, R.M. Chambers, X. Zhao, L. Lamb-Wotton, 

A. Gorsky, E.E. Gaiser, T. Troxler, J. Kominoski, and M. Hiatt. 2020. Hurricanes 
fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). 
Proceedings of the National Academy of Sciences 117: 4831-4841. DOI: 
10.1073/pnas.1908597117 

 
Cattelino, J. 2019. From green to green: The environmentalization of agriculture. 
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DOIs is included in the Appendix. 
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mangrove leaves at Key Largo, Watson River Chickee, Taylor Slough, and Little Rabbit 
Key, South Florida (FCE) from July 2001 to August 2001 ver 2. Environmental Data 
Initiative. https://doi.org/10.6073/pasta/d6bea805dbfa2dca53bfd60735de1af8. 
 
Barr, J., J. Fuentes, and J. Zieman. 2013. Mangrove leaf physiological response to local 
climate at Key Largo, Watson River Chickee, Taylor Slough, and Little Rabbit Key, 
South Florida (FCE) from July 2001 to August 2001 ver 2. Environmental Data Initiative. 
https://doi.org/10.6073/pasta/7390d5ffed6b06f0b881a8942a53e880. 
 
Barr, J., J. Fuentes, and J. Zieman. 2013. Meteorological measurements at Key Largo 
Ranger Station, South Florida (FCE) for July 2001 to August 2001 ver 2. Environmental 
Data Initiative. https://doi.org/10.6073/pasta/d0950d21f1ba78c9e91ae08d867174be. 
 
Barr, J., J. Fuentes, and J. Zieman. 2013. Radiation measurements at Key Largo 
Ranger Station, South Florida (FCE) for July 2001 ver 2. Environmental Data Initiative. 
https://doi.org/10.6073/pasta/7682f3f1180f6048716b39531328a0b4. 
 
Barr, J., J. Fuentes, and J. Zieman. 2013. Rubisco limited photosynthesis rates of Red 
mangrove leaves at Key Largo, Watson River Chickee, Taylor Slough, and Little Rabbit 
Key, South Florida (FCE) from July 2001 to August 2001 ver 2. Environmental Data 
Initiative. https://doi.org/10.6073/pasta/6a3a958ec35ea159a935be9ceb214fe8. 
 
Barr, J., J. Fuentes, V. Engel, and J. Zieman. 2020. Flux measurements from the SRS-6 
Tower, Shark River Slough, Everglades National Park (FCE LTER), South Florida from 
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